Saturday, May 3, 2014

Extract - Transform - Load (ETL) Overview and Definition

ETL is a component of Business Intelligence and Data Warehouse. This post is a collection and overview from the world of internet related with ETL. Hope you guys enjoy. :)


In computing, extract, transform, and load (ETL) refers to a process in database usage and especially in data warehousing that:
  • Extracts data from outside sources
  • Transforms it to fit operational needs, which can include quality levels
  • Loads it into the end target (database, more specifically, operational data store, data mart, or data warehouse)
ETL systems are commonly used to integrate data from multiple applications, typically developed and supported by different vendors or hosted on separate computer hardware. The disparate systems containing the original data are frequently managed and operated by different employees. For example a cost accounting system may combine data from payroll, sales and purchasing.

1. Extract 
The first part of an ETL process involves extracting the data from the source systems. In many cases this is the most challenging aspect of ETL, since extracting data correctly sets the stage for how subsequent processes go further.

Most data warehousing projects consolidate data from different source systems. Each separate system may also use a different data organization and/or format. Common data source formats are relational databases and flat files, but may include non-relational database structures such as Information Management System (IMS) or other data structures such as Virtual Storage Access Method (VSAM) or Indexed Sequential Access Method (ISAM), or even fetching from outside sources such as through web spidering or screen-scraping. The streaming of the extracted data source and load on-the-fly to the destination database is another way of performing ETL when no intermediate data storage is required. In general, the goal of the extraction phase is to convert the data into a single format appropriate for transformation processing.

An intrinsic part of the extraction involves the parsing of extracted data, resulting in a check if the data meets an expected pattern or structure. If not, the data may be rejected entirely or in part.

2. Transform
The transform stage applies a series of rules or functions to the extracted data from the source to derive the data for loading into the end target. Some data sources require very little or even no manipulation of data. In other cases, one or more of the following transformation types may be required to meet the business and technical needs of the target database:
  • Selecting only certain columns to load (or selecting null columns not to load). For example, if the source data has three columns (also called attributes), roll_no, age, and salary, then the selection may take only roll_no and salary. Similarly, the selection mechanism may ignore all those records where salary is not present (salary = null).
  • Translating coded values (e.g., if the source system stores 1 for male and 2 for female, but the warehouse stores M for male and F for female)
  • Encoding free-form values (e.g., mapping "Male" to "M")
  • Deriving a new calculated value (e.g., sale_amount = qty * unit_price)
  • Sorting
  • Joining data from multiple sources (e.g., lookup, merge) and deduplicating the data
  • Aggregation (for example, rollup — summarizing multiple rows of data — total sales for each store, and for each region, etc.)
  • Generating surrogate-key values
  • Transposing or pivoting (turning multiple columns into multiple rows or vice versa)
  • Splitting a column into multiple columns (e.g., converting a comma-separated list, specified as a string in one column, into individual values in different columns)
  • Disaggregation of repeating columns into a separate detail table (e.g., moving a series of addresses in one record into single addresses in a set of records in a linked address table)
  • Lookup and validate the relevant data from tables or referential files for slowly changing dimensions.
  • Applying any form of simple or complex data validation. If validation fails, it may result in a full, partial or no rejection of the data, and thus none, some or all the data is handed over to the next step, depending on the rule design and exception handling. Many of the above transformations may result in exceptions, for example, when a code translation parses an unknown code in the extracted data.
3. Load
The load phase loads the data into the end target, usually the data warehouse (DW). Depending on the requirements of the organization, this process varies widely. Some data warehouses may overwrite existing information with cumulative information; frequently, updating extracted data is done on a daily, weekly, or monthly basis. Other data warehouses (or even other parts of the same data warehouse) may add new data in a historical form at regular intervals—for example, hourly. To understand this, consider a data warehouse that is required to maintain sales records of the last year. This data warehouse overwrites any data older than a year with newer data. However, the entry of data for any one year window is made in a historical manner. The timing and scope to replace or append are strategic design choices dependent on the time available and the business needs. More complex systems can maintain a history and audit trail of all changes to the data loaded in the data warehouse.

As the load phase interacts with a database, the constraints defined in the database schema — as well as in triggers activated upon data load — apply (for example, uniqueness, referential integrity, mandatory fields), which also contribute to the overall data quality performance of the ETL process.

  • For example, a financial institution might have information on a customer in several departments and each department might have that customer's information listed in a different way. The membership department might list the customer by name, whereas the accounting department might list the customer by number. ETL can bundle all this data and consolidate it into a uniform presentation, such as for storing in a database or data warehouse.
  • Another way that companies use ETL is to move information to another application permanently. For instance, the new application might use another database vendor and most likely a very different database schema. ETL can be used to transform the data into a format suitable for the new application to use.
  • An example of this would be an Expense and Cost Recovery System (ECRS) such as used by accountancies, consultancies and lawyers. The data usually ends up in the time and billing system, although some businesses may also utilize the raw data for employee productivity reports to Human Resources (personnel dept.) or equipment usage reports to Facilities Management.
4. Real-Life ETL Cycle
The typical real-life ETL cycle consists of the following execution steps:

  1. Cycle initiation
  2. Build reference data
  3. Extract (from sources)
  4. Validate
  5. Transform (clean, apply business rules, check for data integrity, create aggregates or disaggregates)
  6. Stage (load into staging tables, if used)
  7. Audit reports (for example, on compliance with business rules. Also, in case of failure, helps to diagnose/repair)
  8. Publish (to target tables)
  9. Archive
  10. Clean up
5. Challenges
ETL processes can involve considerable complexity, and significant operational problems can occur with improperly designed ETL systems.

The range of data values or data quality in an operational system may exceed the expectations of designers at the time validation and transformation rules are specified. Data profiling of a source during data analysis can identify the data conditions that must be managed by transform rules specifications. This leads to an amendment of validation rules explicitly and implicitly implemented in the ETL process.

Data warehouses are typically assembled from a variety of data sources with different formats and purposes. As such, ETL is a key process to bring all the data together in a standard, homogeneous environment.

Design analysts should establish the scalability of an ETL system across the lifetime of its usage. This includes understanding the volumes of data that must be processed within service level agreements. The time available to extract from source systems may change, which may mean the same amount of data may have to be processed in less time. Some ETL systems have to scale to process terabytes of data to update data warehouses with tens of terabytes of data. Increasing volumes of data may require designs that can scale from daily batch to multiple-day micro batch to integration with message queues or real-time change-data capture for continuous transformation and update.


ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.
  • Extract is the process of reading data from a database.
  • Transform is the process of converting the extracted data from its previous form into the form it needs to be in so that it can be placed into another database. Transformation occurs by using rules or lookup tables or by combining the data with other data.
  • Load is the process of writing the data into the target database.
ETL is used to migrate data from one database to another, to form data marts and data warehouses and also to convert databases from one format or type to another.


You need to load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To do this, data from one or more operational systems needs to be extracted and copied into the data warehouse. The challenge in data warehouse environments is to integrate, rearrange and consolidate large volumes of data over many systems, thereby providing a new unified information base for business intelligence.

The process of extracting data from source systems and bringing it into the data warehouse is commonly called ETL, which stands for extraction, transformation, and loading. Note that ETL refers to a broad process, and not three well-defined steps. The acronym ETL is perhaps too simplistic, because it omits the transportation phase and implies that each of the other phases of the process is distinct. Nevertheless, the entire process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not necessarily unique to data warehouse environments: a wide variety of proprietary applications and database systems are the IT backbone of any enterprise. Data has to be shared between applications or systems, trying to integrate them, giving at least two applications the same picture of the world. This data sharing was mostly addressed by mechanisms similar to what we now call ETL.

No comments:

Post a Comment

Share Your Inspiration...